Protein Subcellular Localization with Gaussian Kernel Discriminant Analysis and Its Kernel Parameter Selection

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein Subcellular Localization with Gaussian Kernel Discriminant Analysis and Its Kernel Parameter Selection

Kernel discriminant analysis (KDA) is a dimension reduction and classification algorithm based on nonlinear kernel trick, which can be novelly used to treat high-dimensional and complex biological data before undergoing classification processes such as protein subcellular localization. Kernel parameters make a great impact on the performance of the KDA model. Specifically, for KDA with the popu...

متن کامل

Kernel Fisher’s Discriminant Analysis in Gaussian Reproducing Kernel Hilbert Space1

Kernel Fisher’s linear discriminant analysis (KFLDA) has been proposed for nonlinear binary classification (Mika, Rätsch, Weston, Schölkopf and Müller, 1999, Baudat and Anouar, 2000). It is a hybrid method of the classical Fisher’s linear discriminant analysis and a kernel machine. Experimental results (e.g., Schölkopf and Smola, 2002) have shown that the KFLDA performs slightly better in terms...

متن کامل

Kernel discriminant analysis and clustering with parsimonious Gaussian process models

This work presents a family of parsimonious Gaussian process models which allow to build, from a finite sample, a model-based classifier in an infinite dimensional space. The proposed parsimonious models are obtained by constraining the eigendecomposition of the Gaussian processes modeling each class. This allows in particular to use non-linear mapping functions which project the observations i...

متن کامل

Kernel discriminant analysis based feature selection

For two-class problems we propose two feature selection criteria based on kernel discriminant analysis (KDA). The first one is the objective function of kernel discriminant analysis called the KDA criterion. We show that the KDA criterion is monotonic for the deletion of features, which ensures stable feature selection. The second one is the recognition rate obtained by a KDA classifier, called...

متن کامل

Kernel Reference Discriminant Analysis

Linear Discriminant Analysis (LDA) and its nonlinear version Kernel Discriminant Analysis (KDA) are well-known and widely used techniques for supervised feature extraction and dimensionality reduction. They determine an optimal discriminant space for (non)linear data projection based on certain assumptions, e.g. on using normal distributions (either on the input or in the kernel space) for each...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Molecular Sciences

سال: 2017

ISSN: 1422-0067

DOI: 10.3390/ijms18122718